
Take advantage of randomness

Frank Tse

Nexusguard

Agenda

What is random

Some applications of random

Detecting anomalies from randomness

Mitigating ‘random’ attacks

1
2
3
4

Visualizing randomness 5

About::me

From Hong Kong
Researcher in DDoS

I like RFC

IT Security

Identify them correctly
Take actions accordingly

Block the known bad
Verify the known good
Track the uncertain
Challenge the suspicious

DDoS:
Good Human
 > Adult, Kid, Infant
Bad Human
 > Smart, not-so-smart
Good Bot (inhuman)
Bad bot (inhuman)

General IT security vs DDoS

/dev/random

Entropy: initial seeds for random number generation

kern.random.sys.seeded non-blocking while reading
kern.random.sys.harvest.ethernet LAN traffic
kern.random.sys.harvest.point_to_point P2P interface
kern.random.sys.harvest.interrupt HW interrupt (Mouse, keyboard)
kern.random.sys.harvest.swi SW interrupt (exceptions)

Initializing seed for random during boot up (HW)

Entropy: initial seeds for random number generation

If I’m running on VM

[0.000000] Booting paravirtualized kernel on KVM

virtio-rng: a driver for feeding entropy between VM guest and host

Problem: I don’t trust virto-rng
Solution: entropy from remote server

entropy.ubuntu.com

Angers Bridge, collapsed on Apr-16, 1850, due to soldiers marching across it.
aka. “Stuck in synchronization”

2009 MAY 19, Storm Codec [Baofeng] (暴风影音) brings down DNSpod.
Due to lack of random back-off and sleep mechanism

Routing protocol randomized hello timers to avoid ‘stuck in synchronization”

RFC4271 – Border Gateway Protocol v4
To minimize the likelihood that the distribution of BGP messages by a given BGP speaker will contain
peaks, jitter SHOULD be applied to the timers associated with MinASOriginationIntervalTimer,
KeepaliveTimer, MinRouteAdvertisementIntervalTimer, and ConnectRetryTimer. A given BGP speaker
MAY apply the same jitter to each of these quantities, regardless of the destinations to which the
updates are being sent; that is, jitter need not be configured on a per-peer basis.
The suggested default amount of jitter SHALL be determined by multiplying the base value of the
appropriate timer by a random factor, which is uniformly distributed in the range from 0.75 to 1.0.
A new random value SHOULD be picked each time the timer is set. The range of the jitter's random
value MAY be configurable.

C&C Communication

Software update check

Generating Randomart from SSH host key fingerprint

$ ssh root@myhost -o VisualHostKey=yes
Host key fingerprint is ce:7f:ee:de:c0:87:bb:63:8b:ae:d3:6d:08:4d:d4:8f

+--[RSA 2048]----+
| . |
| . . |
| . o |
| . E . |
| So |
| o. .. . |
| oo o+ . |
| ..o.*= |
| .++BB+. |
+-----------------+

Without randomness

CVE-2008-1447: DNS Cache Poisoning Issue
allow remote attackers to spoof DNS traffic via a birthday attack that
uses in-bailiwick referrals to conduct cache poisoning against
recursive resolvers, related to insufficient randomness of DNS
transaction IDs and source ports, aka "DNS Insufficient Socket
Entropy Vulnerability" or "the Kaminsky bug."

Without randomness

TCP Reset attacks / predictable TCP source port
The easiest way to implement ‘random TCP src port’ is counter++
OSX keep TCP source port++ for each new request, same as Windows

How online services support random password

Ideal Random password

Alphanumeric + limited special
chars + Password policy

Alphanumeric + limited special
chars

Alphanumeric

Numeric only

Phone compatible services

Variants by languages
 & site owners

Lazy administrators

Variants by languages
 & site owners, +
Totally insane RANDOM
randomness policy

DDoS attacks – the art of evasion

Attack goes undetected is getting harder
 0-days on protocol are getting harder to dig out
 Detections are implementing closer to bots
 Security awareness increased by site owners
 DDoS tools are mostly open sources
 Signatures of DDoS tools can be easily implemented
 Websites are behind mitigation filters or CDNs

A successful DDoS attacks is
 Make as many false possible as possible
 Detection and mitigation filter never trigger
 Real server believes it is from a legitimate user

Level 0.0 – Bandwidth attacks

100% stateless, even initiated in TCP
99.99% chance of being block since the port is not open
99% chance of being block from source
Your botnet may disconnect from command updates

Level 0.1 – Bandwidth attacks

100% stateless, mostly works with UDP
Attack power relies on intermediate victim servers
Attack efficiency relies on amplification factor
It’s easy to detect, and it’s from fixed source port J

Reflected

Normal Traffic Attack traffic

S
rc

 p
or

t

S
rc

 p
or

t

D
st

 p
or

t

D
st

 p
or

t

Level 1.0 – TCP SYN Flood

100% stateless
99.99% using spoof IP
99% complies with RFC but not exists in real world

RFC 793 (TCP) is 33 years old
Ø  it didn’t say what you should not spoof
Ø  it didn’t say what TCP ACK you should pick

during TCP handshake
Ø  It didn’t say how many TCP Options you

should include during handshake

Level 1.0 – TCP SYN Flood

Sendtcp.c (hping3-20051105)

/* sequence number and ack are random if not set */
tcp->th_seq = (set_seqnum) ? htonl(tcp_seqnum) : htonl(rand());
tcp->th_ack = (set_ack) ? htonl(tcp_ack) : htonl(rand());

sequence++; /* next sequence number */

 if (!opt_keepstill)
 src_port = (sequence + initsport) % 65536;

Main.c
/* set initial source port */

 if (initsport == -1)
 initsport = src_port = 1024 + (rand() % 2000);

It’s easy to spot HPING from source port and non-zero tcp_ack #

Level 1.0 – TCP SYN Flood
Randomness detection can be based on COMBINATION of fields
Insane packet can be dropped: tcp.flags == 0x02 && (ip.len – 40)%4 !=0

Level 2.0 – HTTP GET Flood - static
for ((i=0;i<100;i++)) do `wget target.com &`; done

It’s is legitimate but
 it’s dummy and static
 it’s HTTP/1.0
 lack of HTTP headers

Distribution of requests are

 spectrum like
 not as random as expected

How to mitigate

 block tcp.flags == 0x18 and ip.len < 100 and tcp.dstport == 80

Level 2.1 – HTTP GET Flood – static random

GET / HTTP/1.1
Host: www.nexusguard.com
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_5)
AppleWebKit/537.31 (KHTML, like Gecko) Chrome/26.0.1410.65 Safari/537.31
Referer: https://www.facebook.com/
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

This is legitimate request

Level 2.1 – HTTP GET Flood – static random

GET / HTTP/1.1
Host: www.nexusguard.com
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: $VARIABLE

Referer: https://www.facebook.com/
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

This is how attacker try to variety

Hulk.py
#builds random ascii string
def buildblock(size):

 out_str = ’’
 for i in range(0, size):
 a = random.randint(65, 90)
 out_str += chr(a)
 return(out_str)

Level 2.1 – HTTP GET Flood – static random
Hulk.py
generates a user agent array
def useragent_list():

 global headers_useragents
 headers_useragents.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.3) Gecko/

20090913 Firefox/3.5.3’)
 headers_useragents.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en; rv:1.9.1.3)

Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)’)
 headers_useragents.append('Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.9.1.3)

Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)’)
 headers_useragents.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.1)

Gecko/20090718 Firefox/3.5.1’)
 headers_useragents.append('Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/

532.1 (KHTML, like Gecko) Chrome/4.0.219.6 Safari/532.1’)
 headers_useragents.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64;

Trident/4.0; SLCC2; .NET CLR 2.0.50727; InfoPath.2)’)
 headers_useragents.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/

4.0; SLCC1; .NET CLR 2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.5.30729; .NET CLR 3.0.30729)’)
 headers_useragents.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.2; Win64;

x64; Trident/4.0)’)
 headers_useragents.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/

4.0; SV1; .NET CLR 2.0.50727; InfoPath.2)’)
 headers_useragents.append('Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)’)
 headers_useragents.append('Mozilla/4.0 (compatible; MSIE 6.1; Windows XP)’)
 headers_useragents.append('Opera/9.80 (Windows NT 5.2; U; ru) Presto/2.5.22 Version/10.51')
 return(headers_useragents)

Level 2.1 – HTTP GET Flood – static random

DirtJumper v5 User Agent selector

Level 2.2 – HTTP GET Flood – dynamic random

#http request
def httpcall(url):

 request = urllib2.Request(url + param_joiner + buildblock(random.randint(3,10)) + '=' +
buildblock(random.randint(3,10)))

 request.add_header('User-Agent', random.choice(headers_useragents))
 request.add_header('Cache-Control', 'no-cache’)
 request.add_header('Accept-Charset', 'ISO-8859-1,utf-8;q=0.7,*;q=0.7’)
 request.add_header('Referer', random.choice(headers_referers) +

buildblock(random.randint(5,10)))
 request.add_header('Keep-Alive', random.randint(110,120))
 request.add_header('Connection', 'keep-alive’)
 request.add_header('Host',host)

Don’t do unreasonable random for the sake of randomness confusion
Normal HTTP keep-alive range doesn’t fall in this range

Level 2.2 – HTTP GET Flood – dynamic random

Uagent.php // random user-agent generator

function nt_version()
 return rand(5, 6) . '.' . rand(0, 1);

function ie_version() // IE

 return rand(7, 9) . '.0’;

function osx_version() // need to add support for OSX10.10 J

 return "10_" . rand(5, 7) . '_' . rand(0, 9);

function chrome_version()

 return rand(13, 15) . '.0.' . rand(800, 899) . '.0';

Hint: Predict next version by time (build-in script)

Level 2.2 – HTTP GET Flood – dynamic random

Uagent.php // random user-agent generator

function firefox($arch) {
 $ver = array_random(array(

 'Gecko/' . date('Ymd', rand(strtotime('2011-1-1'), time())) . ' Firefox/' . rand(5,
7) . '.0’,

 'Gecko/' . date('Ymd', rand(strtotime('2011-1-1'), time())) . ' Firefox/' . rand(5,
7) . '.0.1’,

 'Gecko/' . date('Ymd', rand(strtotime('2010-1-1'), time())) . ' Firefox/3.6.' .
rand(1, 20),
 'Gecko/' . date('Ymd', rand(strtotime('2010-1-1'), time())) . ' Firefox/3.8’
));

 switch ($arch) { // firefox for Linux, Mac and Win with different processers
 case 'lin’:
 return "(X11; Linux {proc}; rv:" . rand(5, 7) . ".0) $ver";
 case 'mac':
 $osx = osx_version();
 return "(Macintosh; {proc} Mac OS X $osx rv:" . rand(2, 6) . ".0) $ver »;
 case 'win’:
 default:
 $nt = nt_version();
 return "(Windows NT $nt; {lang}; rv:1.9." . rand(0, 2) . ".20) $ver »;
 }
}

Level 2.3 – HTTP GET Flood – smart random
User-agents are not randomly distributed

0%

20%

40%

60%

80%

100%

20
02

20

04

20
06

20
08

20
10

20
12

20
14

Others
IE
Firefox/Mozilla
Chrome

0%

20%

40%

60%

80%

100%

Legitimate UA distribution by year

Attack UA distribution by year

Level 2.3 – HTTP GET Flood – smart random
User-agents are not randomly distribute

function chooseRandomBrowserAndOS() {
 $frequencies = array(
 34 => array(
 89 => array('chrome', 'win'),
 9 => array('chrome', 'mac'),
 2 => array('chrome', 'lin’)),
 32 => array(
 100 => array('iexplorer', 'win’)),
 25 => array(
 83 => array('firefox', 'win'),
 16 => array('firefox', 'mac'),
 1 => array('firefox', 'lin’)),
 7 => array(
 95 => array('safari', 'mac'),
 4 => array('safari', 'win'),
 1 => array('safari', 'lin’)),
 2 => array(
 91 => array('opera', 'win'),
 6 => array('opera', 'lin'),
 3 => array('opera', 'mac’))
);

Level 2.3 – HTTP GET Flood – dynamic random
100% predictable URL and parameter
100% predictable HTTP header order
99% purely randomize in pre-defined character space
 ADDRESS ORDERS MATTERS
 - because RFC2616 HTTP/1.1 only
specific required headers, not orders
 - implementation of HTTP header order is
depending on OS
- Orders can be normalized / corrected
 by CDN, thank you CDN J

CHARACTER SPACE MATTERS
-  Pure random is easy to be detected
-  Attack character space didn’t fit with

distribution of normal request

Level 3.0 – HTTP GET Flood – emulated random

Al Qaeda Handbook
- The Manchester Manual

Lesson 3
Forged Documents
(Identity Cards, Records Books, Passports)

Forged Documents (Identity Cards, Records Books, Passports)
The following security precautions should be taken:

1. Keeping the passport in a safe place so it
would not be ceized by the security
apparatus, and the brother it belongs to
would have to negotiate its return (I’ll give
you your passport if you give me
information)

2. All documents of the undercover brother,
such as identity cards and passport, should
be falsified.

3. When the undercover brother is traveling
with a certain identity card or passport, he
should know all pertinent [information]
such as the name, profession, and place of
residence.

Use Proxy
X-forwarded-IP
X-Client-IP

Always spoof User-agent

Behave and react
as claimed, real UA

Level 3.0 – HTTP GET Flood – emulated random

4. The brother who has special work status
(commander, communication link, ...) should
have more than one identity card and passport.
He should learn the contents of each, the nature
of the [indicated] profession, and the dialect of
the residence area listed in the document.

5. The photograph of the brother in these
documents should be without a beard. It is
preferable that the brother’s public photograph
[on these documents] be also without a beard. If
he already has one [document] showing a
photograph with a beard, he should replace it.

6. When using an identity document in different
names, no more than one such document should
be carried at one time.

Use anonymous proxy
Use anonymous network (TOR)

Never use real IP to send
 C&C command or send attack

Don’t send too much traffic
from a single machine

Level 3.0 – HTTP GET Flood – emulated random

Now attacks are emulating from real users, with
Ø  Low request rate
Ø  From normally distributed source IP (GEO-IP)
Ø  Totally valid TCP and IP headers
Ø  Legitimate user-agents
Ø  Legitimate user-agents with up-to-date distribution
Ø  Correct HTTP headers and orders

Level 3.0 – HTTP GET Flood – emulated random

p0f	

Passive, progressive, layered validation

Level 3.0 – HTTP GET Flood – emulated random

behavior	

Progressive, application specific challenge,

Level 3.0 – HTTP GET Flood – emulated random

Level BOSS – DDoS the legitimate client

Attacker knows your clients’ IPs
Attacker knows your detection policies
Attacker knows your mitigation filters

Attacker can launch ‘targeted’ DDoS by spoofing legitimate client

Proudly Present
“APT Style” DDoS

Level BOSS – DDoS the legitimate client

False
Positive

False
Negative

A + B = Constant

Level BOSS – DDoS the legitimate client

OR

Draw this fractal with 2 lines of code
Max. string 200

One of the acceptable sample output:
bhvbhdjmnnmbfjnfghjbnvghvbv

Questions?
Contact me via ‘random’ e-mail above

